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The bounded version of the ice model of statistical mechanics is studied. We
consider it in a diamond domain on the Z2-lattice. The configurations sharing
a boundary configuration are shown to be connected under simple loop pertur-
bations. This enables an efficient generation of the configurations with a
probabilistic cellular automaton. The fill-in from the boundary is critically
dependent on the values of the height function along the boundary. We charac-
terize the phenomena at the extrema of this function as well as in some highly
nontrivial cases where results analogous to and more complex than the Arctic
Circle Theorem for dominoes hold.

KEY WORDS: Ice model; six-vertex model; symbolic dynamics; cellular
automaton; tiling; domino.

INTRODUCTION

The subject of this paper is the ice or six-vertex model. It is a classical
model in Statistical Mechanics and has been studied extensively. Essentially
all the studies have concentrated on the infinite model on some lattice
or the finite one with toral boundary condition. A summary of this work
up to -82 can be found in ref. 1.

Our study concentrates on the planar version of the model defined on
a finite domain with boundary. The square lattice is used partly because we
wish to make comparisons to other models having similar underlying
discrete structure. For the same reason we treat only diamond-shaped
domains here. Our methods, which utilize critically the two-dimensionality,
generalize to some other shapes and a few other planar lattices but are
unlikely to have higher dimensional counterparts.
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The main objective is to study how the ensemble of configurations in
the interior of the diamond depends on the boundary data, i.e., the fixed
configuration on the edge of the diamond. The first question is: when is this
set nonempty, i.e., when does the boundary configuration admit a fill-in?
Immediately following this is the question of how many such configura-
tions are there? This leads naturally to entropy considerations. Another
line of investigation is how the legal configurations relate to each other
��what are the allowed perturbations�transformations between them? How
can the entire set of configurations with a given boundary be generated?
Based on a connectivity result we present a simple algorithm that enables
us to simulate the generic element in the configuration space. Utilizing the
height function the investigation proceeds to unveil an interesting
coexistence of qualitatively different subdomains inside the diamond. This
phenomenon��the Arctic Circle separating the domains supporting the
highly ordered and the disordered configurations��was first observed in the
context of dimers�dominoes.(3)

Aside from having some relevance in understanding the geometry of
long range order in ice models, our results have some bearing on tilings
and symbolic dynamics. In a couple of seminal papers Conway and
Lagarias(4) and Thurston(11) investigated the problem of tiling a given
planar domain with polyominoes. On the basis of this and subsequent
other work it seems feasible that there could be a unifying theory for planar
tilings and two-dimensional symbolic dynamical systems. The latter
naturally include many Statistical Mechanics models, e.g., the dimers, ice
model, eight-vertex model, color models and yet others on various lattices.
The program is now on its way and this paper is a small contribution.

1. BASICS

The ice model can be defined in any dimension and for all regular lat-
tices with even vertex degree. Because of the tiling connection indicated in
the introduction we consider only the planar case here. Our methods rely
critically on the two-dimensionality but can be applied to, e.g., triangular
lattice.

Consider the square lattice in two dimensions, Z2. Every lattice site
has four nearest neighbors. The vertex models do not have any spin
variables associated to the lattice points unlike most lattice models. Instead
the lattice variables are the orientations of the arrows between nearest
neighbor sites.

Definition 1.1. A vertex configuration at a lattice site in Z2 is
legal for the six-vertex rule if there are exactly two incoming arrows and
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Fig. 1. Vertex configurations. Square lattice and its dual.

two outgoing ones. A configuration is legal if it has an allowed vertex
configuration at every lattice site.

The allowed vertex configurations are illustrated in Fig. 1, left. The
numbers below indicate the multiplicity of the arrangement. There are six
possibilities, hence the name of the model.

One can view the six-vertex rule as incompressibility of a fluid or
expressing a conservation law for some other system. Its main physical
importance stems however from the modelling of water molecule inter-
action at low temperature. The key physical quantity, residual disorder at
zero temperature, was exactly determined by Lieb for the infinite two-
dimensional model.(9)

In this paper we concentrate on the finite case. The model is defined
on a bounded domain for which we specify the boundary arrows and then
study the possible extensions to the interior. For simple boundaries there
can be many extensions. For a complicated domain shape it may be impos-
sible to find boundary conditions other than those for highly ordered states.

For simplicity we consider a diamond domain. The reason for this is
two-fold. Firstly we want to relate the ice model to certain other models,
in particular to the domino and eight-vertex models, for which the
diamond domain is important and has been analyzed. Secondly we will see
that by specifying the boundary condition on a diamond we can actually
enforce in a few critical cases the boundary condition on an inscribed
square and thereby get the square domain results as well. All results of this
paper generalize to rectangles rotated 45 degrees but since this adds little
insight we record the results for diamonds only.

An N-diamond is a subset of Z2 which has N arrows along each of its
four diagonal sides, N�2, even. The total number of arrows is hence N2.
One can think it to be made of N2�2&N+1 unit squares each of which
has four arrows as sides and the neighboring squares sharing an arrow.
Such a domain contains N2�2+N lattice sites. The boundary configuration
of the N-diamond, which consists of 4N&4 arrows, is fixed. We use the
notation a to refer to the boundary (sites or configuration-arrows depending
on the context).
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Fig. 2. Frozen and temperate 10-diamond configurations.

In Fig. 2 the fixed boundary arrows are rendered bold and the interior
arrows light. We distinguish the corner arrows by a grey shade since they
do not influence the fill-in in any fashion. They are included since it will be
later more natural to refer to the boundary loop instead of the boundary
pieces.

The figure exhibits two extreme configuration types. The highly
ordered state on the left (the NE flow) can be thought as ``frozen'' or to
correspond to low-temperature regime in Statistical Mechanics models
whereas the one on the right, the ``temperate'' one, represents a high tem-
perature�disordered regime.

To arrive at the first result characterizing the fill-in it is necessary to
invoke the concept of dual lattice. For Z2 this is particularly easy��it is self
dual, which means that its dual lattice is the same lattice, only shifted
(formally we write (Z2+ 1

2)2). It is illustrated in Fig. 1, right.
Around each lattice point of Z2 we can draw a unit square with edges

along the lattice lines of the dual. If this is viewed as a clockwise oriented
unit loop around the lattice point the six-vertex rule simply says that the
flux across the loop has to vanish. If we consider a set of adjacent lattice
points and the arrows at them we can form the oriented boundary loop for
the set by adding up the unit loops. This is the minimal lattice path on the
dual lattice that encircles the set. Since an arrow pointing out from a unit
loop points either out of the new boundary loop or into an other unit loop
we will see that the flux across the boundary loop has to vanish as well.
Any legal configuration must therefore have this property and we have
arrived to

Lemma 1.2. A necessary but not sufficient condition for a finite
domain to fill-in is that the flux across its boundary vanishes.
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Remark. With the height function of Section 3. One can resolve the
sufficiency.

2. CYCLES

We now proceed to study how the configurations are related to each
other. This reveals the topological structure of the set of N-diamond con-
figurations and also leads to a method to generate all legal configurations.

The first observation is that at any vertex we can simultaneously flip
the directions of one incoming and one outgoing arrow. This is illustrated
on the left in Fig. 3. For any legal vertex configuration we fix one incoming
and one outgoing arrow, say a and b (not necessarily oriented as shown),
and then reverse each of the non-bold arrows. This yields another legal-ver-
tex configuration at that lattice point. The procedure holds for all six vertex
configurations.

In the flipping at a single vertex configuration we violate the rule on
two of its neighbors. But if we reverse the arrows along a directed arrow
loop (or in the infinite model along a path from infinity to infinity) in the
resulting configuration all vertex configurations are again legal.

Let us call the simplest such action, the reversal of the arrows in a
directed 1-cycle an elementary move.

Call the subset of legal N-diamond configurations with the same
boundary configuration a coset. Some sets of configurations are connected
under reversal of directed 1-cycles (to simplify wording from now on
1-cycles will always be directed). The natural question then is to charac-
terize the configurations that can by constructed from a given configuration
using a finite sequence of elementary moves. Note that in the case of a
bounded domain with a fixed boundary a cycle reversal can never reach the
other cosets because the path to be reversed cannot contain any boundary
arrows.

1-cycles are actually not as rare as one might first believe. To this end
we note a simple result.

Lemma 2.1. In a legal ice-configuration inside every directed cycle
there is a 1-cycle.

Fig. 3. Vertex perturbation and elementary move on a directed 1-cycle.
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Proof. Consider the subset consisting of the directed cycle, the
arrows inside the domain it defines and those with end�head at the lattice
points on the cycle (the ``crossing'' arrows). By Lemma 1.2 the flux across
the minimal lattice path outside this cycle is zero. Hence at some lattice
point on the cycle there is an arrow pointing into the domain. We follow
the directed path that this arrow initiates choosing at every vertex the next
arrow at random among the two available ones. Since the cycle
is finite so is the domain and eventually we either arrive to the boundary
or self-intersect. Either way a new domain is formed which encloses fewer
lattice points than the original and which has a directed cycle boundary. By
induction we conclude the statement. K

Remark. To illustrate the Lemma we note that the boundary of the
temperate configuration in Fig. 2, right is a cycle and the configuration
indeed has a number of 1-cycles. The frozen configuration next to it on the
other hand has no cycles of any size; this is its defining property.

A 1-cycle is off -boundary if it contains no boundary arrows.

Proposition 2.2. A configuration in a N-diamond is the unique
fill-in of the boundary configuration iff it does not have off-boundary
1-cycles.

Proof. If a fill-in is unique then clearly there cannot be any off-
boundary 1-cycles since reversal of such immediately leads to another
configuration with the same boundary.

So suppose that there are two distinct configurations, A and B, which
are fill-ins of the same boundary. Pick a pair of neighboring lattice points
(x0 , x1) between which the arrows differ. Say in A this arrow is heading
x0 � x1 . At vertex x1 there are two other, outgoing arrows in A and in B
two ingoing arrows. We can therefore pick a pair (x1 , x2), x2{x0 so that
again the two arrows are opposite and now form a directed path of length
two on each of the two configurations. Continue in this manner and note
that the directed path cannot include boundary arrows as they are equal in
the two configurations. Since there is a finite number of lattice points, the
path will eventually self-intersect. Then we will have two identical loops
with opposite orientations in A and B. By Lemma 2.1 they have 1-cycles,
which by construction are off-boundary. K

The proposition hints that elementary moves might exhaust the set of
perturbations by generating all the possible configurations. This is indeed
the case.
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Theorem 2.3. The set of all configurations on a diamond with a
common boundary configuration is connected under elementary moves.

Proof. Given two distinct diamond configurations with a common
boundary configuration we will transform one of them to the other through
a finite sequence of 1-cycle reversals. We will check the configurations
lexicographically as shown in Fig. 4. NW of the bold broken line B all
arrows agree on the two configurations. But they disagree at the arrow�
edge ad marked by a dot. From ad we generate the directed disagreement
loop exactly as in the proof of Proposition 2.2. This path can contain
arrows from neither the boundaries nor the agreement area. By Lemma 2.1
it will enclose at least one 1-cycle. On one of the configurations the loop
is oriented clockwise. Call it C and denote the 1-cycles inside it by Ci .

For each corner of a 1-cycle we can associate a contact sector. By this
we mean a closed lattice quadrant rooted at the vertex; first quadrant for
the NE corner, second for the NW and so on. The four contact sectors of
a 1-cycle are clearly disjoint. One can easily see that by the six-vertex rule
there are in a contact sector rooted at a 1-loop both an incoming and an
outgoing semi-infinite path through the root vertex.

Fig. 4. Proof constructions.
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We associate to each Ci two disjoint contact sectors such that neither
contains ad . Then connect each Ci to C with directed paths in the respec-
tive contact sectors, incoming path in one sector, outgoing in the other. By
choosing the orientations of these paths properly each Ci ends up being
on the boundary of a clockwise oriented loop containing the mismatched
edge ad . Using these loops form the minimal directed loop C$ that contains
the disagreement arrow and some of the 1-cycles on its boundary. No
1-cycles will remain strictly in its interior. Note that there must remain at
least one 1-cycle on the inside of the loop C$, again by Lemma 2.1.

By reversing the 1-cycles on the inside of the boundary of C$ we
obtain a new, smaller directed loop C" inside C$ that contains the mis-
matched arrow but none of the Ci 's inside. Since it must by Lemma 2.1
contain 1-cycles the only possible locations for them are next to Ci 's.
Hence they are grazing the inside of the boundary C". Continuing this
strictly monotone shrinking of the directed loop containing the disagree-
ment site we arrive after a finite number of steps to the situations where
there is a 1-cycle containing the edge ad . After reversing it the curve B
moves to its next lexicographic location. The process can be continued
until the entire configuration has been checked and corrected of dis-
agreements. K

Remarks. 1. The theorem indicates that the simplest of actions, the
elementary move, generates all the configurations it possibly can. The
diamond configuration space partitions into cosets inside which the
elementary moves are an irreducible action. However unlike in the context
of the related eight-vertex model (definition as 1.1 but the number of
incoming arrows at a lattice point is 0, 2, or 4, rest are outgoing), where
similar irreducibility holds and the cosets are all of exactly the same size, (6)

here they are of very different size. Furthermore the internal structure of ice
configurations is generically highly nontrivial in some of the cosets unlike
in the eight-vertex model.

2. Similar result can be proved for the ice model on triangular and
Kagome� lattice.(7) Interestingly when there are several different elementary
actions, they are all needed for the connectivity.

3. Finally it may be of interest to note the similarity to a certain two-
dimensional dynamical system treated in ref. 5. In this model the number of
copies of each symbol in a square neighborhood is fixed��an exact conser-
vation law like our arrow condition. The perturbations work out somewhat
similarly. Infinite periodic sequences and their ``slide-deformations'' play
the same roles as directed cycles and their reversals in ice. If the model is
defined on a torus this means then rotating periodic sequences of symbols
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in finite loops. They generate most of the configurations space but sur-
prisingly not all, i.e., analog to Theorem 2.3 does not quite hold there.

3. HEIGHT

The notion of height is closely related to the concept of flux intro-
duced in the first section. For the ice-model the height was first introduced
using a graphical representation and without connection to flux in a paper
by van Beijeren.(2) What makes it an important notion is its utility in
distinguishing different boundary conditions and the fact that it can be
defined for various lattice models. Among them are ice on various lattices,
dominoes�dimers, certain color models etc. This connection will be dis-
cussed in later sections.

Definition 3.1. The height function, h, is an integer-valued func-
tion defined on the vertices of the dual lattice. Moving from one such
lattice point to its nearest neighbor its value increases by one if the con-
figuration arrow to be crossed points to the left and decreases by one if the
arrow points to the right. This determines the value of the function, the
height, everywhere on the configuration upto an additive constant. Giving
the height at any one dual lattice point determines the height function
uniquely. Height at the end of a path subtracted by the height at the begin-
ning divided by the number of arrows crossed is the tilt of the path.

Remarks. 1. From this on we fix the height to be zero at the
leftmost dual lattice point inside the diamond.

2. Note that the flux across a section in the dual lattice is just height
computed along with an agreement on what is the positive direction. By
the ice rule the flux across any loop vanishes. Hence the definition of height
is consistent, i.e., when we loop back to the original dual lattice point from
which we started the height computation we recover the initial value.

3. Height is a complete description of the configuration, i.e., deter-
mines it uniquely. Its restriction to the boundary of the configuration, the
boundary height is frequently useful. In Fig. 5 the underlined entries are the
boundary height for the given 4-diamond. The values of boundary height
inside the diamond are called the inside boundary height.

4. Tilt is a number between and including \1. In the example in
Fig. 4 we have recorded its value over each of the four edges as they are
traced to the counterclockwise direction (in bold).

Definition 3.2. The height of a configuration is called extremal if
the boundary height uniquely defines the entire height.
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Fig. 5. Height. Configuration arrows are bold, height path are light.

Remarks. 1. The example on the right of Fig. 5 illustrates extremal
height.

2. Height can be viewed as a (discrete) surface above the configura-
tion. The discrete partial derivative assuming its extremal value to some
direction over the entire configuration corresponds to the extremal height.
If we consider a N-diamond but scale it and h by 1�N and take the scaling
limit N � �, we obtain a Lipschitz surface. The height is extremal iff its
partial derivative (infinitesimal tilt) is extremal to some direction over the
entire unit diamond.

If the boundary height determines the height uniquely then the boundary
configuration determines the interior uniquely. This is exactly the case of
the frozen configurations like the NE-flow in Fig. 2. One can quickly dis-
cover the simplest such configurations. Let the tilt along the entire edge be
either constant \1 or the height be constant on the inside boundary of the
edge. Assign the symbol \1 or 0 to the edge accordingly and record the
four values in a clockwise run around the boundary. The signature (1, 0,
&1, 0) corresponds to the NE-flow, (1, &1, 0, 0) to a L-flow and (1, &1,
1, &1) to a X-flow, where the name describes the geometry of the vector
field. Cyclically permuting these signatures (rotating the configurations)
results in the 10 most basic frozen configurations.

To analyze the boundary dependency it is useful to distinguish switch
blocks and neutral boundary blocks. These consist of two adjacent boundary
arrows, in the former case pointing to the same lattice point and in the latter
pointing to different lattice points. Figure 6a illustrates the switch blocks:
arrow pairs at boundary height values 1, 3, 5, and 7 above the switch point
s1 are switch blocks contributing +2 to the height each and the two below
s1 contribute &2 each.

The total frozen area next to the boundary is just the sum of the tri-
angular areas next to the extremal boundary pieces. This can be quantified
as follows.
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Fig. 6. Extremal blocks, switch point. Frozen periphery.

Lemma 3.3. In a N-diamond let Af be the number of interior
arrows fixed by the boundary pieces of extremal height. Let

A\= 1
4 max

[dj ]
:
j

[(h(dj+1)&h(dj ))2+(1\1) |h(dj+1)&h(dj )|] (1)

where [dj ] is the set of dual lattice sites inside the diamond where the
boundary height is computed. Then

A&�Af �A+ and A+&A&�2N

Proof. n�2 adjacent switch blocks of the same sign along a N-diamond
edge (from dj to dj+1) results in boundary height change |h(dj+1)&h(dj )|=n
(n�N, n even). A little algebra shows that these arrows uniquely determine
n2�4+n�2 arrows in the interior (the triangular arrangements in Fig. 6,
right). Hence the upper bound for Af , A+ , is obtained by summing these
contributions over maximally long boundary pieces each of extreme tilt \1.

A triangle (again with n�2 adjacent switch blocks of the same sign
along a diamond edge) sharing a corner with the diamond may share at
most n arrows with a similar triangle on the other edge. Removing the
possible duplicate arrows from the count and summing as above gives A& .

The last inequality is immediate. Equality is attained when each edge
of the N-diamond consists of N�2 switch blocks of same sign. K

The diametrically opposite case to the extremal height is the case
where each of the diamond edges is a directed path of arrows (ignore the
four corner arrows). Call such an arrangement, a quasicycle. The cycle
boundary of Fig. 2, right is a special case of this. For a quasicycle boundary
the inside boundary height is identically zero since the boundary is made of
neutral blocks of the same heading (outside the diamond the boundary
height is either \1). Note that each of the arrow paths along the edges can
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be reversed without affecting the fill-in. Since the corner arrows can be chosen
at will this means that any quasicycle boundary can be transformed to a
cycle boundary without affecting the interior of the configuration. Hence by
Lemma 2.1 there is non-uniqueness in the fill-in and indeed this non-
uniqueness is maximal. The quasicycle case corresponds to the temperate
configurations where the boundary forces no interior arrows, i.e., Af =0.

It is also useful to define average height, H(d )=E(h)(d ), where the
average is taken over all the possible fill-ins from the boundary with
uniform weight. In the frozen case obviously H(d )#h(d ).

In the temperate case the average height vanishes inside the diamond.
The argument for this is as follows. Consider a dual lattice site d in the
inside of the diamond. Take a legal fill-in arrow configuration, call it a+ .
Compute the height ha+

(d ) by starting at an inside boundary point (there
the height is zero since the boundary is a quasicycle. The configuration
where all the arrows have been reversed is another legal diamond con-
figuration with a quasicycle boundary. Reversing this boundary arrows
gives us a configuration a& with the same boundary as a+ but all interior
arrows reversed. Following the same dual lattice path that we used for
computing ha+(d ) gives now ha&(d )=&ha+(d ) since all the off-boundary
arrows are reversed and height on the inside boundary is zero. Hence for
each fill-in there is exactly one ``reverse'' fill-in and the equally weighted
average of the height over any dual-lattice site must therefore equal to zero.

We say that a boundary configuration is non-trivial if it contains
segments of constant extremal height which are of non-trivial length
(different from 1 and N ). In this case the boundary forces some but not all
of the interior. Since the configuration is not frozen in the remaining part
of the domain there must be 1-cycles.

To summarize these basic findings on height we formulate

Proposition 3.4. In a diamond configuration

(i) ha is extremal iff a is frozen.

(ii) ha | �=[(0, 1)]* or [(0, &1)]* iff a is temperate.

(iii) Temperate and frozen subdomains coexist in a iff a | � is non-
trivial.

Lieb computed the residual entropy of the infinite ice-model on the Z2

lattice.(9) This quantity, the average uncertainty per arrow, is the same as
topological entropy which can be computed as

htop= lim
N � �

1
N 2 ln[number of N-diamond configurations]
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They key here is that there is no boundary condition on the diamond.
From ref. 9 we get that htop= 3

4 ln 4
3 .

Using this we immediately get an asymptotic upper bound for the
number of legal configurations in the case of a boundary condition. By for-
mula (1) the fraction of the arrows in a N-diamond that is fixed by
the boundary is Af (N )�N 2. In the frozen case Af (N )=N2+O(N ) and in
the case of quasicycle boundary Af (N )#0. Inside the diamond but off the
frozen area the entropy per site obviously cannot exceed that of the free
model. Hence in the scaling limit (lattice spacing equals to 1�N, N � �, so
the limiting domain will be the unit diamond |x|+| y|�1�2) we obtain

Proposition 3.5. For the diamond ice the average topological
entropy over the unit diamond for a given boundary condition is bounded
from above by

\1& lim
N � �

Af (N )

N2 + 3
4

ln
4
3

(2)

whenever the limit exists. In particular in the frozen case entropy vanishes
whereas in the temperate case it is bounded by Lieb's number.

Remark. Although we do not have a lower bound for the entropy
already from the propositions and the analysis above it is plain that the
boundaries fill-in in very different ways. This is in notable contrast with the
eight-vertex model, where all legal boundaries fill-in in exactly the same
number of ways.(6)

4. CONFIGURATIONS

4.1. Generating Algorithm

We now show a way of computing the configurations satisfying a
given boundary condition. The reason is two-fold. Firstly the underlying
principle is simple yet interesting and utilizes the results derived upto now.
Secondly to analyze the case of nontrivial boundary we need an efficient
way of computing the configurations.

The method is based on the elementary moves and Theorem 2.3. Con-
sider the set of all N-diamond configurations for a given boundary condition.
Suppose that we are given one of them. From that we form the first even
configuration in the following way. Since every (not necessarily directed)
1-cycle consists of four arrows there are 16 different ones. Form the symbol
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set S=[0,..., 15] from them. The arrow configuration is completely deter-
mined if we specify the symbols at every other 1-cycle site, i.e., on a check-
erboard pattern which includes the boundary arrows. Take the boundary
cycles to be dark�even and denote the configuration of all the dark�even
symbols by C (e).

Consider now four adjoining dark 1-cycles in a cross formation. The
local rule is simply to read off from them the fifth (light) 1-cycle at the
center. This is then reversed with probability p if it is a directed 1-cycle. If
the reversal takes place the adjoining 1-cycles are updated as well, since
one arrow in each of them was reversed. This local operation performed at
every neighborhood centered at a light 1-cycle gives the new odd configura-
tion C (o), the symbols on light�odd squares. The local rule immediately
gives the global map, the probabilistic cellular automaton Fp : C (e) � C (o).
The map C (o) � C (e) that updates the even symbol array works essentially
the same way. There we have to augment the image with the symbols on
the dark boundary squares. They can never be reversed since the boundary
arrows are fixed.

Alternating the two maps generates the infinite forward orbit of even
and odd configurations all of which correspond to legal configurations for
the given boundary. If the initial configuration is frozen, there are no directed
1-cycles to reverse and the orbit is trivial. But other cases are less so. Note
that by Theorem 2.3 the action of the cellular automaton is irreducible;
every legal configuration associated to the given boundary condition can
be reached. In fact the local updates are done independently and non-tri-
vially, i.e., 0< p<1 this orbit reaches every allowed configuration almost
surely in finite time. The automaton relaxes a legal initial configuration to
the equilibrium distribution on all legal configurations. This distribution is
uniform (the measure of maximal entropy). At p=1�2 the relaxation rate
is maximal and the Markov Chain is expected to be rapidly mixing.(10)

As the rule only uses integer operations it can be implemented as a
fast lookup table with a random mutation on two symbols (the directed
1-cycles). This is indeed a very efficient way of generating all the configura-
tions associated with a given boundary conditions.

4.2. Simulation Results

For a legal boundary with non-trivial height the geometry and
statistics in the interior of the configuration are highly nontrivial. We now
investigate this regime for a few boundary types for which the scaling limit
(2) exists.

Recall that the non-triviality of the boundary meant that the boundary
configuration has segments of constant extremal tilt whose length is neither
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minimal (1) nor maximal (N, the entire side of the N-diamond). The sim-
plest case for this is the one where two opposite sides are split into two
equally long extremal pieces. If the switch points si are the midpoints of the
edges the height surface is geometrically a ridge roof. The unforced part of
the interior, a square, is also indicated in Fig. 7a. Next to the diamond
sides we have noted the tilts (when extremal, i.e., \1) and inside boundary
heights (when constant 0). Note that the tilts along edges of the inscribed
square are now forced to be maximal \1.

The middle and right plots are results from a simulation with a F1�2 -
cellular automaton on a 102-diamond. The middle plot is at the iterate
2_104. The 16 different symbols are rendered in different grades of grey. In
the interior of the ``free'' square there is a clear demarcation between the
frozen and disordered domains. One can also discern ribbon-like structures
on the boundary region. These are randomly fluctuating 1-dimensional
defects in the ordered domain.

The rightmost plot from the same run represent the density of 1-cycle
reversals in the configuration at the equilibrium. Here we have recorded the
number of 1-cycle reversals at every site during the iterates 2&2.5_104

and converted this to grey level. Dark cells are the sites of most activity. In
the forced corner triangles there is obviously no such activity hence they
are rendered white.

The relaxations was performed to several different initial configura-
tions with the given boundary configuration in diamonds of different size.
The results were all essentially as above except that in a larger diamond the
boundary of the disk obviously appeared smoother.

Alternatively we could split each of the four diamond sides into
segments of equal length and maximal tilt so that the tilts it would alter-
nate as in Fig. 8a. A simple variational argument shows that with this
choice of switch points the ``free'' area in the center is maximal. Note

Fig. 7. Boundary tilts, configuration and the 1-cycle density.
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Fig. 8. Less restricted ice domain and the equilibrium 1-cycle density.

also that the forced area is exactly the same now that it was in the first case
above. However the tilt along the boundary of the inscribed square is dif-
ferent as indicated.

It is fairly easy to construct some fill-ins for this boundary condition.
There is obviously some freedom in doing this since this boundary belongs
to type (iii) of Proposition 3.4, i.e., there will be 1-cycles in the interior. If
one then lets the cellular automaton relax from any of these the result is
generically as in the middle illustration.

The plots are from a 150-diamond. After some 104 iterates the con-
figuration has reached an equilibrium. The middle plot is at the iterate
1.5_104. There is again a clear demarcation between the frozen and tem-
perate domains which results in the flower-like boundary curve. The right-
most plot from the same run represent the density of 1-cycle reversals in
the configuration at the equilibrium (we have recorded the number of 1-cycle
reversals at every site during the iterates 1.1&1.5_104 and converted this
to grey level).

Note that Proposition 3.5 gives for both of the cases above the same
upper bound for the average topological entropy over the unit diamond
(in the scaling limit), namely 3�8 ln(4�3), half of that for the free model. It
seems obvious that the latter case has higher entropy but proving this is
difficult.

Boundary conditions with shorter pieces of extremal tilt force less area
inside by Lemma 3.3. Hence one expects the boundary curve between
frozen and disordered domains move closer to the ``hard boundary'' (the
forced triangles in the examples above). This was verified in the simulations
as well. In all the cases smooth curve pieces are separated from each other
by cups as in the second case above.

Finally we point out that ice on triangular and Kagome� lattices have
height functions. The coexistence of the frozen and the temperate domains
is qualitatively similar to the cases presented here.(7)
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5. COMPARISON TO DOMINOES

Suppose that one wishes to tile a finite planar domain with dominoes,
i.e., 1_2 and 2_1 pieces. The success depends on trivial things like even-
ness of the area, but also on subtle things related to the shape of the
domain. One can define a height function for dominoes analogously to
Definition 3.1.(11) Note however that since there are no arrows, only the
shape of the domain determines the boundary height. it turns out that in
some domains like the square the boundary does not influence the interior
of the tiling much. For example the orientation of the tile at any given inte-
rior site is quite uniform over the different tilings of the domain. This is due
to the fact that the boundary height for this domain is essentially zero.
In some domains with non-trivial boundary height there is however quite
striking boundary dependency.

Figure 9a shows one such domain, an Aztec diamond (of order 6, i.e.,
2_6 rows), and one of its domino tilings. In a string of papers Propp et
al. investigated this set-up and found a particularly clean geometric result.
The authors proved that generically the temperate subtiling (disordered
domino tiling) is separated from the frozen one (brickwall tiling) by a
curve which is a circle that grazes the diamond.(3) We illustrate this result
in Fig. 9b, where the density of elementary moves in dominoes are plotted
at every (dual lattice) site in an Aztec diamond of order 122 (between
iterates 8&12_103). Some of the basic correspondences between ice and
dominoes are given in Table 1.

Note that we only list the simplest frozen states. For ice there are more
frozen states than just the ten indicated in Section 3. The same holds for
dominoes, e.g., the herring bone pattern whenever it fits the domain. The
fact that rotation of 2_2 domino pairs generates the set of allowed domino
tilings of a given domain is in exact correspondence to our Theorem 2.3.

Fig. 9. Aztec diamond and the equilibrium density of 2_2-moves.
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Table 1. Ice and Domino Composition

Ice Domino

simplest frozen states NE, L ja X-flows and brickwall, its shift and
their rotations their rotations

maximal disorder quasicycle boundary square domain
allowed perturbations directed loop reversals rotation or reflection of

a symmetric subdomain
elementary move directed 1-cycle reversal domino pair rotation

Moreover the same procedure that was outlined in Section 4 can be applied
to dominoes as well. The resulting simple probabilistic cellular automaton,
that does the random flipping of 2_2 domino pairs, gives all possible
domino covers to a given domain along its orbit from any legal initial tiling.
This was the method with which we made the illustration in Fig. 9, right.

The domino tilt along the Aztec diamond is extremal on each side,
alternatively \1 as we trace the boundary around. Every tiling of the Aztec
diamond has exactly one 2_2 domino pair touching each of the sides.
Generically it is in the middle of the side��this is the reason the boundary
of the temperate zone just grazes the diamond (in the scaling limit).

Both the dominoes and the ice-model indicate similar boundary depen-
dency which in the simplest non-trivial case manifests as an Arctic Circle
that separates the frozen and disordered regimes. The appearance of it is due
to the existence of height function. The fundamental difference between the
two models is that while the diamond domain forces the boundary height in
dominoes, in ice it doesn't. But as soon as we choose for ice the height on a
diamond boundary to be like in the domino case, the circle result follows.

The common phenomena in both models seem to be related to the
non-differentiability of the average height (in the scaling limit). The physi-
cal principles have been noted that seem to imply this pushing away of the
boundary curve from the diamond edge. In domino case these tilt discon-
tinuities are only at corners. In our second example the tilt is discontinuous
at the centerpoints of the diamond edges. Hence average height must be
non-differentiable and indeed the same phenomenon takes place at these
locations as well (Fig. 8b, c). How to formulate this rigorously remains an
open problem as does the exact shapes in the scaling limit.
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